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A multiscale information measure (MIM), calculable from per-pixel wavelet coefficients, but relying on
global statistics of synthetic aperture radar (SAR) image, is proposed. It fully exploits the variations in
speckle pattern when the image resolution varies from course to fine, thus it can capture the intrinsic
texture of the scene backscatter and the texture due to speckle simultaneously. Graph spectral segmen-
tation methods based on MIM and the usual similarity measure are carried out on two real SAR images.
Experimental results show that MIM can characterize texture information of SAR image more effectively
than the commonly used similarity measure.
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Over the past few years, the development of synthetic
aperture radar (SAR) imaging for applications from re-
mote sensing to surface surveillance has experienced a
rapid growth. For such applications, segmentation plays
a key role in the subsequent analysis for target detec-
tion, recognition, and image compression. However, au-
tomatic segmentation of SAR image is extremely difficult
because of the speckle noise[1]. Although speckle is an in-
trinsic nature of coherent imaging systems, it is not truly
a noise in the typical engineering sense. Ulaby et al.

have pointed out that texture in SAR image is a combi-
nation of intrinsic texture of the scene backscatter and
texture due to speckle[2]. Thus, in order to get an accu-
rate segmentation result of SAR image, it appears sensi-
ble to give an appropriate texture measure that adapts
to the peculiarity of SAR image. Due to the interfer-
ence among radar returns, the physical attributes of the
different classes of terrain give rise to distinct multiscale
behavior. For example, grass terrain is composed of many
small scatterers while forest terrain is composed of fewer
larger scatterers. One would thus expect that there is
more correlation between pixels at different scales in the
forest case since fewer random variables are involved[3].
To capture the behavior among the different scales of the
SAR image, we employ the wavelet transform theory.

Recently, spectral clustering has emerged in the con-
text of segmentation and clustering[4,5]. It does not need
the parametric assumptions about data distributions. In
addition, it is simple to implement, and can be solved
efficiently by standard linear algebra software, and it of-
ten outperforms traditional clustering algorithms. It is
often described in graph theoretic terms[6]. Let G (V,E)
be an undirected graph with vertex set V = {v1, · · · , vn}
and edge set E = {eij , i, j = 1, · · · , n}. The weight on
each edge, wij , is a function of the similarity between
vertices vi and vj . The weight matrix of the graph is
W = {wij , i, j = 1, · · · , n}. Define the degree of a ver-
tex vi as di =

∑n

j=1 wij , the degree matrix D is the

diagonal matrix with the degrees d1, · · · , dn on the diago-
nal. The spectral clustering method uses the eigenvectors
corresponding to certain eigenvalues (the spectrum) of a
suitably chosen matrix, usually the weight matrix or the
closely related Laplacian matrix, to partition the data. A
graph G can be bi-partitioned into two disjoint subsets
C1 and C2 simply by removing edges between the two
parts. The degree of similarity between these two pieces
can be computed as a total weight of the edges that have
been removed. This quantity is called the Cut:

Cut(C1,C2) =
∑N1,N2

i,j=1
wij , (1)

where the index i = 1, · · · , N1 runs over the N1 vertices
of set C1 and the index j = 1, · · · , N2 runs over the N2

vertices of set C2. The minimum cut criterion given by
Wu and Leahy[7] has been used in spectral clustering in
Ref. [8]. However, the cut cost favors cutting small sets
of isolated vertices in the graph. To compensate for this
effect, a number of rather heuristically motivated im-
provements to the cut cost have been proposed, such as
the normalized cut[4], the min-max cut[9], and the fore-
ground cut[10].

Despite that spectral clustering method has been ob-
served to work well in a number of cases, there exist
situations when it does not perform very well. The poor
results are mainly due to the choice of the weight matrix.
In the literatures, it often depends on user-specified pa-
rameters. Automatic procedures for proper selection of
the similarity measure are rarely discussed.

In order to apply the spectral clustering method to the
segmentation of SAR image, the construction of an ap-
propriate similarity measure is very crucial. Thus, we
introduce a data-driven information theoretic similarity
measure, which can capture the rich statistical informa-
tion in speckle, to spectral segmentation of SAR image.
The rationale is that spatial heterogeneity is regarded
as uncertainty, i.e., unpredictability of a sample feature.
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Thus, such an uncertainty can be measured by resort-
ing to information theory in a mathematically rigorous
and physically consistent manner. A suitable criterion
is mutual information (MI). In principle, MI measures
nonlinear dependencies between a set of random variables
taking into account higher order statistical structures ex-
isting in the data, as opposed to linear and second-order
statistical measures such as correlation and covariance.
Suppose that X and Y are two random variables with
a joint density function fX,Y and marginal density func-

tions fX and fY . The MI is defined as[11]

MI (X, Y ) =
∑

x,y

fX,Y (x, y) log
fX,Y (x, y)

fX (x) fY (y)
. (2)

Based on MI, we consider the variations in speckle pat-
tern as image resolution varies from course to fine, and
apply discrete wavelet transformation (DWT) to the SAR
image to be segmented. Here, we exploit the Haar
wavelet for simplicity and leave the selection of wavelet as
the subject of our future research. At any decomposition
level l = 1, · · · , L, the input image is transformed into
four subbands: LLl, LHl, HLl, and HHl. LLl contains the
low-frequency portion of the original image, whereas LHl,
HLl, and HHl capture the horizontal, vertical and diag-
onal features in the image, respectively. Thus, for every
pixel x in the original image, there are three vectors corre-
sponding to it, i.e. {xLH1

, · · · , xLHL
}, {xHL1

, · · · , xHLL
},

and {xHH1
, · · · , xHHL

}. Then each vector can be modeled
as a random variable by defining an appropriate proba-
bility distribution. We first assume that the distributions

are defined by PLH = {pLHl
}

L

l=1, PHL = {pHLl
}

L

l=1, and

PHH = {pHHl
}

L

l=1. For further study on how to use con-
cepts arising from information theory to capture corre-
lation between two pixels in SAR image, assume that
there is another pixel y with the probability distribu-

tions given by QLH = {qLHl
}

L

l=1, QHL = {qHLl
}

L

l=1,

and QHH = {qHHl
}

L

l=1. Using {PLH,PHL,PHH} and
{QLH,QHL,QHH}, we define the multiscale information
measure (MIM) for pixel pair (x, y) in the SAR image as

MIM (x, y) =
∑

D

L
∑

l=1

fDl
(xDl

, yDl
)

× log
fDl

(xDl
, yDl

)

pDl
(xDl

) qDl
(yDl

)
, (3)

where fDl
is the joint density function, D refers to the

three spatial orientations. The MIM defined by Eq. (3)
can be used to measure the similarity between two pixels
x and y. To calculate the MIM, we resort to a concept
known as joint histogram, which is given as

h =







h (0, 0) h (0, 1) · · · h (0, M − 1)
h (1, 0) h (1, 1) · · · h (1, M − 1)
· · · · · · · · ·

h (M − 1, 0) h (M − 1, 1) · · · h (M − 1, M − 1)






,

but here it is calculated with respect to two pixels in the
same image. Let x and y be two pixels in the original

image, then the value h (x, y) (x, y ∈ [0, M − 1]) is the
number of pixel pairs having the intensity value x in the
first pixel and y in the second pixel. M is the number
of gray levels used in the image. Through the joint his-
togram, the probability distributions used in Eq. (3) can
be calculated as

fDl
(xDl

, yDl
) =

h (xDl
, yDl

)
∑

xD
l
,yD

l

h (xDl
, yDl

)
, (4)

pDl
(xDl

) =
∑

yD
l

fDl
(xDl

, yDl
), (5)

qDl
(yDl

) =
∑

xD
l

fDl
(xDl

, yDl
). (6)

It can be seen from Eqs. (4) − (6) that the joint
histogram is the only requirement to determine the
weight matrix of SAR image. We use the near-
est neighbor interpolation method[12] to estimate the
joint histogram of SAR image, in consideration of
reducing the computational complexity. Of course,
there exist other interpolation algorithms such as linear
interpolation[13], cubic convolution interpolation[14], par-
tial volume interpolation[15], and generalized partial vol-
ume interpolation[16].

In the following, we choose two real SAR images of
128 × 128 pixels and demonstrate that the MIM is an
appropriate similarity measure for spectral segmentation
of SAR image. In order to give comparable results, we
put forth first the generally used similarity measure as[4]

wxy = exp

{

−‖F (x) − F (y)‖
2
2

σI

}

∗

{

exp
{

−‖P (x)−P (y)‖2

2

σP

}

if ‖P (x) − P (y)‖2 < r

0 otherwise
,

(7)

where F (·) and P (·) are gray level and spatial position
of pixels x and y, the scaling parameters σI and σP con-
trol how rapidly the similarity falls off with the gray
difference and distance between two pixels. They are
somewhat sensitive parameters that are usually chosen
empirically. Note that wxy = 0 for any pair of x and y
that are more than r pixels apart.

Then, we give the spectral segmentation algorithm de-
scribed in Ref. [4] as follows.

1) Given an image, set up a weighted undirected graph
G (V,E) and set the weight on the edge connecting two
pixels to be a measure of the similarity between them.

2) Solve the generalized eigenproblem (D− W) z =
λDz for eigenvector z(2) corresponding to the second
smallest eigenvalue λ2.

3) Bipartition the graph G by using z(2).
4) Decide if the current partition should be subdivided

and recursively repartition the sub-graph if necessary.
Figure 1 shows the segmentation results using the algo-

rithms based on MIM and common similarity measure.
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Fig. 1. (a,d) Original SAR images; (b,e) spectral segmenta-
tion results based on similarity measure defined by Eq. (7);
(c,f) spectral segmentation results based on MIM.

It can be seen that the graph spectral segmentation al-
gorithm based on MIM is robust to the speckle noise and
outperforms the algorithm based on common similarity
measure.

In conclusion, we define a theoretical concept, MIM,
to the spectral segmentation of SAR image. The method
takes advantage of multiscale stochastic structure and
global statistics information of SAR image. Experimen-
tal results confirm that the MIM for spectral segmenta-
tion of SAR image is very encouraging.
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